
Hi there.

Wanna code?

QUICK START GUIDE
FOR TEACHERS

• Tips and advice for getting to
 grips with the BBC micro:bit
• Step-by-step coding
 challenges with clear
 solutions
• Guidance on creating and
 sharing your own programs
 and tutorials

Supported by

PREVIEW

PREVIEWHi there.

Wanna code?

QUICK START GUIDE
FOR TEACHERS

• Tips and advice for getting to
 grips with the BBC micro:bit
• Step-by-step coding
 challenges with clear
 solutions
• Guidance on creating and
 sharing your own programs
 and tutorials

Supported by

PREVIEW

Computational thinking is the thought processes involved in formulating a
problem and expressing its solution(s) in a way that a computer – human
or machine – can carry out effectively. In 2006, I began to advocate that
everyone, regardless of profession, of career, or of age, can benefit from
learning how to think computationally[1]. With the BBC micro:bit, the BBC
and its partners, including Microsoft, catalyze our realization of this dream.
Children can learn how to think computationally by first formulating a problem
and conceptualizing a solution. Then, by expressing their solution using a
code editor, such as Microsoft TouchDevelop, and by compiling and running
their programme on the BBC micro:bit, they can see their code come alive!

I commend the BBC and the UK for their leadership in the Make it Digital
initiative. Teaching children at an early age the fundamentals of computing
helps provide them with the programming skills and the computational
thinking skills they will need to function in the 21st Century workforce.
Programming the BBC micro:bit will teach children basic coding concepts,
such as variables, types, procedures, iteration, and conditionals. Solving
problems with the BBC micro:bit will expose children to computational
thinking skills, such as abstraction, decomposition, pattern matching,
algorithm design, and data representation. Students knowledgeable with
these skills will be in high demand by all industrial, government, and
academic sectors, not just information technology.

Most importantly, the BBC micro:bit will introduce children to the joy
of computing. Making one’s personal device do whatever one wants
is empowering. Programming the BBC micro:bit will tap into a child’s
imagination and creativity. The device and programming environment
provide a playful way to explore a multitude of computational behaviors.

I am thrilled to see this Quick Start Guide for Teachers, which is rich
with examples that show how hands-on coding is easy and natural.
Let’s have fun together!

Jeannette M. Wing
Corporate Vice President, Microsoft Research
25 May 2015

[1] Jeannette M. Wing, “Computational Thinking,” Communications of the ACM 49 (3): 33, 2006.

ForewordPREVIEW

Contents

Introduction – the Make It Digital initiative 02

The BBC micro:bit 04

The BBC micro:bit website 06

Getting started with the TouchDevelop editor 08

Uploading programs to the BBC micro:bit 10

Coding building blocks 11

Challenges and solutions 12

Creating your own tutorials 28

BBC micro:bit challenges and the curriculum 32

Acknowledgements

Written by: Miles Berry and Ray Chambers
Additional material written by: Ross Lowe

Consultants: Roger Davies
Project managed and developed by: Becca Law
Cover and text design: me&him Design

Typeset in GT Walsheim Regular, Bold and Helvetica TT Regular,
Oblique, Bold by me&him Design.

A catalogue record for this title is available from the British Library.
ISBN: 978-1-471-86382-0

Printed in the UK by
Ashford Colour Press Ltd

Acknowledgements
Thank you to the following people who contributed their ideas
and support: Steve Connolly and Debbie Smith, Hodder Education;
Ray Chambers, Uppingham Community College; Miles Berry,
University of Roehampton; Roger Davies, Queen Elizabeth
School; Clare Riley, Jeannette Wing, Thomas Ball, Peli de Halleux,
Michal Moskal, Eric Anderson, Jonathan Protzenko, Steve Hodges,
Deirdre Quarnstrom, Vardhani Mellacheruvu, Lori Ada Kilty, Darren
Gehring and Judith Bishop from Microsoft and the BBC team.

This content is licenced under
Attribution-NonCommercial-ShareAlike
CC BY-NC-SA

This license lets others remix, tweak, and build upon your
work non-commercially, as long as they credit you and
license their new creations under the identical terms.

See - https://creativecommons.org/licenses/by-nc-sa/4.0/

Although every effort has been made to ensure that website
addresses are correct at time of going to press, Microsoft
cannot be held responsible for the content of any website
mentioned. It is sometimes possible to find a relocated web
page by typing in the address of the home page for a website
in the URL window of your browser.

The contents of this Preview copy are as accurate as possible
at the time of printing. Updates and changes will be made
prior to release of the final edition.

PREVIEW

PREVIEW

The project aims to put digital creativity in the spotlight like never before,
and to help build the nation’s digital skills, through an ambitious range of
new programmes, partnerships and projects.

These include:

• A major partnership to develop and give a BBC micro:bit coding device
 to all year 7 children across the UK, for free, to inspire a future generation.
• A season of programmes and online activity involving the BBC’s biggest
 and best-loved brands, including Doctor Who, EastEnders, Radio 1, The
 One Show, Children in Need, BBC Weather and many more, including a
 new factual drama about the development of Grand Theft Auto on BBC
 Two and a documentary on Bletchley Park.
• The Make it Digital Traineeship to create life-changing opportunities for
 up to 5,000 young unemployed people; the largest traineeship of its kind.
• Partnerships with around 50 major organisations across the UK.
• A range of formal education activities and events, including Bitesize,
 Live Lessons and School Report.

The BBC micro:bit initiative
Back in the 1980s, the BBC Micro was used extensively in primary and
secondary schools and was instrumental in inspiring a generation of
technology pioneers. Nowadays, computing and digital technology can be
found everywhere, but the emphasis seems to have shifted from the creation
of technology to the consumption of it.

As part of the Make it Digital initiative, the BBC has collaborated with over 25
organisations to create the BBC micro:bit, a personal programmable device,
which will be provided, free of charge, to every child in Year 7 across the UK.

It provides an exciting and accessible introduction to coding on a simple
hardware platform. Its purpose is to enthuse, excite and empower a new
generation of digitally-creative young people. This is why the BBC micro:bits
are specifically designed for young people themselves to own.

The Make It Digital initiative

In March 2015, the BBC launched
Make it Digital – a major UK-wide initiative
to inspire a new generation to get creative
with coding, programming and digital
technology.

02

Quick Start Guide for Teachers

PREVIEW

03

The micro:bit device
The BBC micro:bit is a very simple computer. It is programmed by
using another device (smart phone, tablet, PC, IPad etc.) to write the
program, which is then compiled and downloaded onto the BBC micro:bit.
The newly programmed BBC micro:bit can be disconnected and will run the
program, just like other embedded devices, such as a digital watch, a GPS
device or a pocket calculator.

The device has a display made up of 25 LEDs and some simple input
controls that can be used in a number of ways. It is small enough
to slip into a pocket or even wear.

The BBC micro:bit offers a gentle introduction to programming and making:
switch on, program it to do something fun, wear it, customise it, and put new
ideas into action. It can be programmed to show words or shapes, tell the
time or play games.

It is designed to be a starting point to get young people interested in
coding so they can move on to other, more sophisticated devices in future.
The BBC micro:bit has an accelerometer, which can detect movement,
and it can connect and communicate with other devices, including Arduino,
Galileo and Raspberry Pi.

It offers a natural progression from screen-based programming using visual
languages, and can lead on to more complex, text-based programming.

The BBC micro:bit also has Bluetooth Low Energy, allowing it to be part of
the ‘Internet of Things’ – the extension of the internet beyond computers and
smartphones to include other embedded systems, from fridges to cars, and
even home central heating systems.

Supporting learning
The BBC and its partners recognise that a hands-on learning experience can
help young people to grasp the computing curricula in ways that on-screen
coding activities and traditional classroom learning cannot.

The BBC micro:bit can help learners to develop their understanding of
physical technology and computing, offering the opportunity to apply
complex thinking, analytical and problem-solving strategies.

Inspirational content on BBC radio and television will raise awareness of the
BBC micro:bit, while teachers, parents and young people will be encouraged
and supported to get the most out of the device through a rich range of online
resources and real-world events created by the BBC and partners.

Partnerships
More than 25 organisations have been involved in this pioneering partnership.
See live.microbit.co.uk/start-guide/partnerships for more information.

See section on Coding
building blocks on page 11
and Challenges and
Solutions on pages 12−27

You can share links to tutorials
and code with other microbit
users via the dedicated BBC
micro:bit CAS forum at:
computingatschool.org.uk/

Coding options

PREVIEW

PREVIEW

04

The BBC micro:bit:
What is it designed to do?

The BBC micro:bit is a very simple computer. A computer is a machine
that accepts input, processes this according to stored instructions
and then produces output. All three of these elements are present
on the BBC micro:bit's printed circuit board.

Front of board

BUTTON A
A form of input. The BBC micro:bit
detects when this button is being
pressed. This is a push-to-make
switch (pressing it completes an
electrical circuit).

PINS P0, P1, P2
Pins for attaching external sensors,
like thermometers or moisture
detectors, and actuators, like turning
a motor on, so kids can build projects
with them like a plant watering alarm.
Can be either input or output and
either digital or analogue.

3V AND GND
Enable a user to power an external
device, like a motor, using the battery
or USB. They also enable capacitive
touch (using an object as a switch).

HOLES
Holes for sewing,
mounting and
hanging.

LED
Coordinates start at (0,0) in top left hand corner. In computing, displays
start at the top left hand corner so, in coding terms, this is (0,0). This
is different from mathematics and graphs where (0,0) is the bottom left
corner. It is important to note this is also relative, so if the screen rotates
(0,0) is still the top left corner of the screen. See Challenge 3 for the use
of coordinates in the Catch the egg game.

BUTTON B
See Button A

LED MATRIX
5 × 5 array of light emitting diodes
(LEDs), which can each be set to
on / off. The brightness of the set
of LEDs as a whole can also be
controlled.

Quick Start Guide for Teachers

PREVIEW

A

B

0 1 2 GND3V

A

B

0 1 2 GND3V

A

B

0 1 2 GND3V

A

B

0 1 2 GND3V

A

B

0 1 2 GND3V

A

B

012GND 3V

A

B

012GND 3V

A

B

012GND 3V

A

B

012GND 3V

A

B

012GND 3V

05

The BBC micro:bit

Back of board

USB PLUG
Programs can be downloaded from Windows and Macs onto the micro:bit
via a USB data connection. The USB connects the micro:bit to a computer.
This means the micro:bit can send data to and receive data from the computer.
The USB will be used to ‘flash’ new programmes onto the micro:bit and to
allow the micro:bit to communicate with a computer or an Internet connection.

BUTTON R
System button, which has various
uses. Has to be pressed to ‘flash’
new code onto the device over BLE.

ACCELEROMETER
Converts analogue information about how quickly the
BBC micro:bit’s speed changes to a digital form that
can be used in micro:bit programs. Output from the
accelerometer is in milli-g. Allows the BBC micro:bit to
be used to control movement of on-screen characters
such as Kodu (see page 11).

COMPASS
A sensor to detect magnetic fields,
like the Earth's, allowing the direction
of the micro:bit to be determined and
converted to a digital form that can
be used in micro:bit programs.
Output from the compass is degrees.

PROCESSOR
All the BBC
micro:bit's
programs and
any data are
stored on the
small silicon-chip
micro-controller.
This tiny chip
designed by
ARM has 128kB
flash memory
and 16kB RAM
memory; a tiny
fraction of the
memory on a
smart phone.

BLUETOOTH LOW ENERGY
ANTENNA
A messaging service, built for the
Internet of Things, so devices can
talk to each other. The micro:bit will
be a peripheral device and it can talk
to a central device like a smartphone
or tablet (or a laptop that has BLE).
This means the micro:bit can send
signals to and receive signals from
a central device. BLE will be used
to ‘flash’ new programmes onto the
micro:bit and to allow the micro:bit to
communicate with a computer or an
internet connection.

STATUS LED
Flashes yellow when the system
wants to tell the user something
has happened.

BATTERY
This socket
connects
the external
battery pack
(containing two
AAA batteries)
to the board.
The battery
pack is attached
physically to the
board with a
Velcro patch.

A note about machine code

Machine code is the language the CPU (central
processing unit) of a computer understands, but it isn't
very readable by humans as it is made up of numbers.

Machine Code is known as a low level language. High
level languages, such as Blocks or TouchDevelop, are
readable/understandable by humans. A program written
in a high level language, like TouchDevelop, has to
be compiled (translated) into machine code that the
processor ‘understands’ (see page 10).

A note about ARM

ARM designs the processors for most mobile phones
and embedded systems (such as smart thermostats,
car engine controllers and the processors inside digital
cameras), and was founded by members of the original
BBC Micro team!

BBC micro:bit is based on ARM’s mbed platform
for embedded systems, but programming the
BBC micro:bit is very straightforward.

PREVIEW

PREVIEW

06

The BBC micro:bit website

The BBC micro:bit website live.microbit.co.uk is the starting
point for learning about and programming on the BBC micro:bit.
There is extensive help available on the site, including scaffolded,
step-by-step tutorials for programming the BBC micro:bit.

02 03 04 05 0106 07

Sign in to the BBC micro:bit website to:

- save and retrieve scripts,
- compile code and ‘flash’ it to a micro:bit,
- publish scripts to the micro:bit website
- share code with other BBC micro:bit users
- set up groups, with access codes, for your
 students to join

To sign in:

- Enter your facilitator code provided (email
 BBCmicrobit@bbc.co.uk if you don’t have one).
- Authenticate your account by entering a
 username and password from an existing
 account (Facebook, Google, Microsoft, Office 365)
- Agree to the terms of use.

01 My Scripts

For more information visit live.microbit.co.uk/help.

Quick Start Guide for Teachers

PREVIEW

07

The BBC micro:bit website

TouchDevelop
The TouchDevelop editor sits between visual,
block-based languages, such as Blockly, and
traditional, text-based programming languages,
such as Python. The editor is based on the
TouchDevelop programming language and comes
with a BBC micro:bit library of commands installed.

Like other text-based programming languages,
TouchDevelop provides a great deal of flexibility: as
well as supporting input, output, sequence, selection,
repetition and variables, there’s also support for
user-defined functions, making this a good choice
for developing the ideas of decomposition and
abstraction.

Other code editors
A number of other code editors will be available
from the Autumn term 2015. See live.microbit.co.uk/
create-code for up-to-date information on which code
editors are available.

02 Create Code

The BBC micro:bit site offers different types of
coding tutorials. Some tutorials are interactive
and lead you through the creation of a program
step-by-step with on-screen tips. Others present
guided challenges with fewer instructions. Here
we provide support by signposting key instructions
and routes through projects.

These are video and step-by-step guides for getting
started with the BBC micro:bit. These videos and
guides walk you through the process of starting to
write some code, including switching between the
different code editors available, saving projects,
installing the loader software on your computer,
connecting the BBC micro:bit and uploading code
to it via the loader. This content will be continually
updated. Here you will find frequently asked questions and

where to go for additional support.

This introduces the BBC micro:bit in the context of
its use in the classroom and at home. It contains
useful information for anyone supporting children
on their BBC micro:bit journey.

This is a bank of BBC micro:bit projects created
by other coders for you to explore, use and adapt.

Some of these projects have been created by the
BBC and BBC micro:bit partners, but most will be
written by young people themselves and other BBC
micro:bit users. These are a great starting point for
seeing just what the BBC micro:bit can do, as well
as learning how to program it. It’s much easier to
take someone else’s program and edit it to make it
work a little (or a lot) differently, than having to start
programming from a blank screen.

03 Tutorials

05 Getting Started

07 Help

06 Teachers and Parents

04 Projects

Click here to choose and select an available code
editor (see below) to start creating programs for
the BBC micro:bit.

All code editors come with a BBC micro:bit simulator,
so you can test ideas and code on screen without
having to have a BBC micro:bit plugged into the
computer to run the code you write. Two key editors
are currently available to program the BBC micro:bit.

Blocks
This is a graphical, drag and drop code editor,
where coding blocks snap together. It’s quite
similar to Scratch, which many students may have
encountered in primary school. There’s support for the
main input and output functions of the BBC micro:bit,
as well as standard programming constructs such as
sequence, selection, repetition and variables.

It’s easy to start a project in Blocks and then
convert it to a TouchDevelop script.

PREVIEW

PREVIEW

08

Quick Start Guide for Teachers

Getting started with the
TouchDevelop editor

Once you’ve signed in to the BBC micro:bit website
(see details on page 6), you can get started with coding!

01
Type live.microbit.co.uk into your
web browser.

04
Have a go at clicking some of the buttons on screen to see what they do.

02
Click Create Code.

03
In the TouchDevelop section, click
the second link down.

CODING AREA
This is where all your coding
takes place.

MY SCRIPTS
Click to return to any previous
scripts you’ve written in the
TouchDevelop editor.

COMPILE
Click to compile your program to
allow it to run on the BBC micro:bit
(see page 10 for more information
about the compilation process).

SCRIPT
Click to display all the functions
you’re working with, any libraries
you’re using as part of your code
(these are sets of functions
developed by other people that
you can use in your script) and
any global data.

RUN
Click to run a program. The
simulator on the right-hand side
of the screen will show the code
in action.

UNDO
Click to undo any changes to
your code.

PREVIEW

09

Coding options

05

Click on the micro:bit->plot(2,2) instruction that’s already in the script. A code keyboard will appear at the
bottom of the screen.

Where next?

Learning more about TouchDevelop

There’s much more to TouchDevelop than the BBC micro:bit. Because of its touch-based interface, it’s a great coding
platform to use on tablets or even smartphones. Typically, it’s used to produce web-based apps that can run online
on any platform, so it’s also a good tool to use when teaching students to develop apps for smartphones or tablets,
without having to worry about platform-specific details.

The main TouchDevelop website, touchdevelop.com/, has all the details, the online editor itself, plenty of shared
examples and a number of interactive, step-by-step tutorials.

+
Click to add instructions above or
below the selected line.

PASTE
Click to paste in cut or
copied code.

CODE KEYBOARD
The keyboard makes it easy to edit your code on a touch screen device or just using a mouse. If you’re working
with a normal keyboard, you can enter language commands by just typing, and you’ll see the possible command
completions appear automatically.

ALL APIS
Search for appropriate code /
functions to add to your programs.

SIMULATOR
All BBC micro:bit code editors
include a simulator, which shows
how your program will execute.

This means you can:
- start writing code for the BBC
 micro:bit even if you don’t have
 the actual device.
- test programs on the simulator
 to ensure they work before
 downloading the code to the
 BBC micro:bit.

CUT / COPY
Click to cut or copy
selected code.

To try out some simple programs to use with the BBC micro:bit, see Coding building blocks on page 11. To start
working through step-by step BBC micro:bit programming challenges, see pages 12-26. Once you’ve completed all
three challenges, visit live.microbit.co.uk/start-guide/certificate to pick up your certificate!

PREVIEW

PREVIEW

Client	 Computer	

Azure	

TouchDevelop	 script	

C++	 program	

ARM	 binary	 program	

Compiler	
1	

TouchDevelop	 	 	

C++	

ARM	 binary	

Compiler	
2	

mbed	 compile	 service	

ARM	

mbed	 C++	 SDK	

C++	

1

User	 drags	 ARM	 binary	
to	 drive	 for	 micro:bit	

3

User	 codes	
TouchDevelop	
program	 and	 presses	
“compile”	 buGon	

Drive	

Web	 	 browser	

2

USB	

User	 accepts	 download	 	
of	 ARM	 binary	

10

Quick Start Guide for Teachers

How does my program get
onto the BBC micro:bit?

For your program to work on the BBC micro:bit, first it
has to be compiled. Compiling means to translate a
program into a more efficient computer language.

When you hit the compile button on the TouchDevelop
editor interface, your program is actually compiled twice.

First, your program is translated into a C++ program.
C++ is a very popular language for programming
software systems, both large (like Microsoft Windows)
and small (like the BBC micro:bit).

Second, the C++ program is translated into a binary file
that contains the machine code in the instruction set used
by the ARM processor that is on your BBC micro:bit.
Compiling to C++ actually happens in the web browser
itself, and then the C++ code is sent over the internet to
a server (at developer.mbed.org) which compiles the C++
code to the ARM machine code (the hex file), which then
gets sent back to your browser. When you drag the hex
file over to the drive for your BBC micro:bit, your ARM
binary program is installed and begins to run.

The BBC micro:bit hardware is built using ARM’s open
source mbed platform. This means that as well as using
TouchDevelop and the other editors on the BBC micro:bit
site, it is possible for more confident coders to program
the BBC micro:bit using industry-standard development
tools, including ARM’s online C++ compiler at developer.
mbed.org.

 Getting your programs
 onto the BBC micro:bit

 The last stage − getting your program onto the
 micro:bit itself − is quite easy.

- Hit the compile button in the code editor. A .hex file
 will be created.

- Assuming there aren’t any error messages at this
 stage, download the ‘.hex’ file.

- Plug the BBC micro:bit in to your computer’s USB
 port using a standard micro USB cable (supplied).
 The BBC micro:bit should show up as a USB
 storage device.

- Drag the .hex file onto the drive that corresponds to
 the BBC micro:bit. Once the system LED has stopped
 flashing, press the reset button on the back of the
 BBC micro:bit to start the program.

 Once a program is uploaded to the BBC
 micro:bit, the device can be unplugged and
 will run independently, as long as the user
 has attached a battery pack.

Uploading programs to the BBC micro:bit

The BBC Micro:bit
Compiling Process

PREVIEW

11

Coding options

Coding building blocks

It’s easy to get started with coding on the BBC micro:bit. The
images below show the code you need (both in the Blocks and
TouchDevelop editors) to make your BBC micro:bit do simple things.
These could be used to kick off your first BBC micro:bit coding
sessions with your students and can also be used in more complex
projects.

Activity Code in Blocks Code in TouchDevelop

Press a button to turn
on a light

Online tutorial:
live.microbit.co.uk/td/
tutorials/button-light

Online tutorial:
live.microbit.co.uk/td/
tutorials/scroll-text

Online tutorial:
live.microbit.co.uk/td/
tutorials/flashing-heart

Scrolling text

Flashing heart image

PREVIEW

PREVIEW

Outcome

Display of a Creeper face (similar to the character seen
in Minecraft) on the BBC micro:bit LED display:

- By default, all of the lights are off.
- There will be a single state (Minecraft Creeper face).
- The image will turn off after 3 seconds.

Tutorials

For a video tutorial go to live.microbit.co.uk/
start-guide/video-tutorials/digital-key-chain

For a guided coding tutorial go to live.microbit.co.uk/
td/tutorials/digital-key-chain

Decomposing the problem

This challenge can be decomposed into four parts:

1. Design how our single state will look (which LEDs
 will be switched on to display our Creeper face).
2. Use the image editor to turn on the required LEDs.
3. Create a timer to pause the image for 3 seconds.
4. Reset the display to its original state: OFF.

Design how each state will look
Before we start to code, we need to plan what our single state will look like.

Challenge 1: Digital key chain
Programming a Minecraft Creeper face using the image editor within TouchDevelop

12

Draw a 5 × 5 grid and colour in the boxes
to show what the Minecraft Creeper face will
look like.

You don’t have to program a Creeper face.
The image could be anything you like.

Key
LED on =
LED off =

Why not try
out different
images?

Start by opening a new browser window and typing
live.microbit.co.uk in the address bar.

Click on Create Code. In Blocks, click New
project. Type in a name for your script, such as
Creeper. Click on create.

Use the image editor to turn on the required LEDs
We need to specify which LEDs will be ON to display the Creeper face.

01

02

CREEPER FACE

Quick Start Guide for Teachers

PREVIEW

Programming a Minecraft Creeper face using the image editor within TouchDevelop

13

The Images section includes blocks that control
the creation and display of an image on the BBC
micro:bit through LEDs.

Select the show image block.

You will notice that an offset value of 0 is
displayed.

Changing this allows you to display your
image in different positions on the BBC
micro:bit display.

We now want to select which LEDs will be
ON for our Creeper face.

Select the Images button then the create image
block. Tick the boxes in the block to make the
shape of the Creeper face, as shown in
the image.

Challenge 1: Digital key chain

A blank coding environment will appear
(see screenshot).

Select the Images button from the menu on
the left.

03

04

05

06

Drag the create image block into the empty
position on the show image block.

This will make sure that the Creeper face
appears when you press the run button.

07

It’s important that we test our programs regularly. This allows us to debug the program
and fix any errors.

PREVIEW

PREVIEW

Quick Start Guide for Teachers

14

Press the run button to test your program.
What does it look like on the simulator?
If it doesn’t work as expected, go back and
try to find and correct the problem.

From the Basic menu, select the pause block.
The BBC micro:bit uses milliseconds as input, so
1000 is equivalent to 1 second.

We want to pause for 3 seconds, so change the
number to 3000.

Drag the block upwards so it snaps into place
below the show image block.

Create a timer to pause for 3 seconds
To display the Creeper face for a short period of time, we need to add a timer.

08

09

Reset the display to its original state: OFF
To finish our program, we’re going to turn all of the LEDs off. This will help to prolong the battery
life of the BBC micro:bit.

You should now have a finished program
which will display a Creeper face.

11

Click on the LED menu. Select the clear screen
block and snap it under the pause block. This will
make sure that all of the LEDs are turned off after
the Creeper face has displayed for 3 seconds.

10

Do your own thing!

- Change the pattern in the create image block to show your own design.
- Instead of clearing the display, add another show image and pause block to create a simple two-state
 animation. Can you experiment with the brightness of the Creeper image between face changes?

A solution for the complete digital keyring code can be found on page 27. The working
code can be found at live.microbit.co.uk/start-guide/solutions/digital-key-chain.

PREVIEW

15

Challenge 2: Digital pet

Outcome

A digital pet (similar to Tamagotchis from the 90s) with
different states that can be controlled by pressing
buttons A and B (our input). The idea is that our digital
pet has demands for attention. In this example our
different states will represent some of these demands:

- The default state of the pet is AWAKE.
- Button A will stroke the pet, causing it to fall ASLEEP.
- Button B will feed the pet, so it is EATING.

Tutorials

For a video tutorial go to live.microbit.co.uk/
start-guide/video-tutorials/digital-pet

For a guided coding tutorial go to live.microbit.co.uk/
td/tutorials/digital-pet

Decomposing the problem

This challenge can be decomposed into four parts:

1. Design how each state will look
 (which LEDs will be switched on).
2. Create a function which tells our BBC micro:bit
 which LEDs to turn on for each state.
3. Create a while loop to continue showing a state
 until a different button is pressed.
4. Create conditional statements to specify which
 function to run if a particular button is pressed,
 e.g. if input A pressed then go to ASLEEP state.

Design how each state will look
Before we start to code, we need to plan out what our pet will look like for each state.

Challenge 2: Digital pet
Programming an animated pet using variables and functions

Draw a 5 × 5 grid and colour in the lights to
show what your pet will look like at different times,
for example: AWAKE, ASLEEP, EATING
(as shown right).

Start by opening a new browser window and typing
live.microbit.co.uk in the address bar. Click on
Create Code. In TouchDevelop, click New project.
Type in a name for your script, such as Digital
pet. Click on create.

Create a function for each state
We’re going to start by programming a function for the different states of our digital
pet (e.g. which LEDs are ON and which are OFF for each state). We’re going to do
this first because we will want to call on these functions later, without having to leave
the main process.

01

02

AWAKE SLEEPING EATING

PREVIEW

PREVIEW

16

To create the first function (for our AWAKE face),
select the script button from the top of the screen.
Click on the + button to bring up your resources
menu.

Select function from the menu. This will bring
you to a coding area (as shown right). Notice that
it will say do stuff at the top. This is the current
name of the function. Click on do stuff and
rename your function set awake. Click OK.

Now that we have named our function, we need
to specify which LEDs should be turned on within
the function. We can do this using the image
editor. Click do nothing in the coding area. A
keyboard will pop up at the bottom of the screen.
Select micro:bit. Notice how the keyboard
changes. Select create image.

Select the button on the code keyboard that
looks like a grid. This will bring up your image
editor. Each box represents one of the LEDS on
the BBC micro:bit display. Select the appropriate
boxes (to match your grid from step 1) to create
your AWAKE face. Click off the editor to return to
your code. Click store in var (to store this data
in a variable). Press the + button to add a new
line of code. In the code keyboard click img
(this is the variable you have just created).
Click show image.

You have now completed your first function.
It should look something like this.

Use what you've learnt so far to create the other
two functions for the ASLEEP and EATING
states of your digital pet.

Name your A function set sleep and your
EATING function set eat.

03

04

05

06

07

Quick Start Guide for Teachers

PREVIEW

17

Challenge 2: Digital pet

Before you continue, click on script. Underneath
code you will see your main program. Main is like
your ‘home’ code; all the other functions you create
will run from this. You should see all the functions
you have created underneath main. Click main to
select it.

Select do nothing within the main function to start
writing your code. Select while from the keyboard.

Your while loop will appear as shown right.
This will make our program loop indefinitely.

08

09

10

Creating a while loop
We want each state of your digital pet to continue playing until a button is pressed.
We therefore need to add a while loop. A while loop will continue running a piece
of code until a certain condition is met.

Running this program at this stage would burn the
battery. To fix this, add a pause instruction at the
end of the loop. Click do nothing in the code, then
on the code keyboard click micro:bit, more, then
pause. Any pause duration will work; in this case,
we can even pick 0.

11

Test your program and debug
It’s important that we test our programs regularly. This allows us to debug the
program and fix any errors. Emphasise this point with students.

PREVIEW

PREVIEW

18

Remove the set awake function you used to test
your program in the previous step. Now select the
if button from the keyboard. This will insert a piece
of IF code.

You now need to specify the condition for your
IF code (e.g. If button A is pressed, then…).
Select micro:bit from the keyboard.
Now click on button is pressed on the keyboard.
This code allows the BBC micro:bit to detect
when button A or B is pressed.

Select the do nothing block within the while loop.
Click the code button on the keyboard.

Select the set awake function that you created
previously. Now press the run button. You should
see your digital pet come to life in the simulator!

14

15

12

13

Quick Start Guide for Teachers

Create conditional (if) statements to specify
which functions to run
When coding, we can use a conditional (if) statement to control the outcome of a program.
In this program, we want to create conditional statements to specify which function to run if a
particular button is pressed, e.g. if input A (Button A) is pressed, then go to ASLEEP state;
if input B (Button) is pressed then go to EATING state.

Test your code
Try testing your code at this point. If you press button A, you might notice that your digital pet only
sleeps for one millisecond. This is because you haven’t specified how long you want your pet to
sleep for when you press button A. We will need to pause the state.

PREVIEW

19

Challenge 2: Digital pet

Button A is always selected by default.
Button A is what we want to press to activate
the ASLEEP state so you don’t need to change
anything in the code here.

We now need to add our set sleep function
inside the IF statement. Select do nothing
within the IF code. On the keyboard press
code and then select your function for sleep.

We now need to tell our pet what to do when we’re
not pressing button A. Select the else do nothing
code. On the keyboard, click code and then your
set awake function.

For the purpose of testing, let’s include a pause for
5000 milliseconds (5 seconds). In your code, click
on your set sleep function. Click on the + button
below it. Now click on micro:bit on the keyboard
and select the pause button. Replace 100 with
5000.

16

17

18

19

Do your own thing!

- Can you add in another IF condition which will feed your pet?
- Try using the image editor to create key frames which make your digital pet’s mouth move when it is EATING.
• Can you make use of the scrolling text so that you know when your digital pet is going to wake up?
 Try micro:bit->show string.
• Can you program your pet to say that he is hungry after 60 seconds?
• Can you use a variable to count how many times you’ve fed your pet? Use the buttons to check your total.

A solution for the complete digital keyring code can be found on page 27. The working
code can be found at live.microbit.co.uk/start-guide/solutions/digital-pet.

PREVIEW

PREVIEW

Outcome

A ‘catch the egg’ game in which an egg (represented
by a single LED) ‘falls’ from the top of the BBC micro:bit
display and can be caught in a moveable basket at the
bottom of the display. The script includes code for the
accelerometer, which allows a user to control the
position of the basket when the device is tilted:

- By default, the first ‘egg’ LED starts to drop from
 the centre of the top line of the display
- The subsequent ‘eggs’ will then fall from random
 positions at the top of the display.
- The ‘basket’ will be moved by tilting the
 BBC micro:bit.

Tutorials

For a video tutorial go to live.microbit.co.uk/
start-guide/video-tutorials/catch-the-egg

For a guided coding tutorial go to live.microbit.co.uk/
td/tutorials/catch-the-egg

Decomposing the problem

This challenge can be decomposed into six parts:

1. Create the global variables for the game.
2. Assign initial values to each of the global variables.
3. Plot the starting positions of the LEDs.
4. Create a forever loop to update the display regularly.
5. Get the ‘egg’ to drop down the LED display.
6. Change the position of the basket using the
 accelerometer functionality.
7. Use IF conditions to check the final position of the egg.

Create the global variables for the game
Global variables are different to local variables (which only work inside a single loop).
Global variables are accessible from any part of our program.

Challenge 3: Catch the egg game
Programming a game of ‘catch the egg’ using the accelerometer in TouchDevelop

20

Start by opening a new browser window and typing
live.microbit.co.uk in the address bar. Click on
Create Code. In TouchDevelop, click New project.
Type in a name for your script, such as Catch
the egg. Click on create.

We’re going to start by creating a number of global
variables that will be accessible from any part of
our program. To begin, click on the script button in
the top-right corner.

01

02

Quick Start Guide for Teachers

PREVIEW

21

Challenge 3: Catch the egg game

A menu will pop up, which allows you to add other
features to your program. In this case, we’re going
to add in a global variable by clicking on the +
button.

Select the data button from the menu that
appears.

Now it’s time to select your data type. For this
program we’re going to use Number for our
variables. This is because we’re going to be using
x and y coordinates (to designate the position of
our falling eggs and the basket to catch them in),
which are usually stored as numbers.

We’re going to start by creating a score variable
which will track how many times we catch our egg
in the basket. Type in score, then click the ok
button. You should see your score variable
in vars.

03

04

05

06

Naming variables
Explain, or remind students, to be as descriptive as possible when naming variables
(e.g. score, timer, etc.) rather than using generic names (e.g. variable 1,
variable 2, etc.). It’s much easier to find and fix problems with variables when
you can easily work out which one isn’t working.

PREVIEW

PREVIEW

22

Quick Start Guide for Teachers

07

08

10

11

09

Repeat steps 2−6 to create all the variables for
your game. You will need to create four variables
in total: score, x (to control the position of the
basket), obstacle x (to control the horizontal
position of the egg) and obstacle y (to control
the vertical position of the egg.)

Once you have finished setting up each of the
variables, you should have something which
looks like the following.

Return to your main script. Click do nothing
below the main function, then select the data
button from the keyboard.

To assign a value to the x variable, select the
assignment button (:=) from the keyboard. We
want the basket to sit in the centre of the bottom
row of the display, so type in 2. Click on the +
button below the x variable to add lines for the
other three variables.

Assign values to the remaining three variables
by following the steps above. We want the egg to
start falling from the top centre of the display at
the beginning of our program, so set obstacle x
to 2 (middle) and obstacle y to 0 (top). Set the
score to 0 (because we haven’t scored
anything yet).

Select the variable x to begin with. Remember:
x controls the position of the basket.

Assign initial values to each of the global variables
As with any programming language, when you declare your variables, you need to set them
to a value. This value can be manipulated and changed later on.

PREVIEW

23

Challenge 3: Catch the egg game

12

13

Click the + button to add another line of code
below your assigned variables. Select the
micro:bit library from the keyboard and then
select the plot button (on screen 2 of the
keyboard). You should now have something
which looks like the image shown on the right.

The code shown above will only turn on a LED at
position 0,0. We need to remove each of these
values and replace them with our obstacle x
and obstacle y value. Delete the first 0 and then
select obstacle x. Repeat this process to enter
obstacle y.

Plot the starting positions of the LEDs
All LEDs on the BBC micro:bit display are OFF by default. We’re going to set the
BBC micro:bit to plot our first lights.

14
We now need to plot the starting position of the
basket (x). Click the + button to add a new line of
code. Then select the micro:bit library from the
keyboard and then plot. Change the first 0 to the
x variable and the second 0 to 4.

Test your code
It’s important to test that our code is working correctly so we can debug any errors.
Regularly remind students of the importance of testing.

15
At this point in the program we’re going to run
it by selecting the run button. You should see
something similar when you run your program.

PREVIEW

PREVIEW

24

Quick Start Guide for Teachers

17

18

19

16

Before we can light up the LED beneath the first
LED, we need to unplot the original LED. This
will ensure a smooth change from one lit LED to
another, as if the egg is falling downwards. Select
micro:bit from the keyboard and unplot. Unplot
both your basket position (x) and your egg position
(obstacle x, obstacle y), as shown in the picture.

To get the egg to move down the display, we
need to change the vertical position of the egg
(obstacle y). We can do this by adding 1 to the
value of obstacle y, each second. Select obstacle
y. Select the assignment (:=) button, data and
obstacle y + 1.

You now need to plot the new obstacle, using plot
as previously. We will need to make sure that we
slow down the board. Select micro:bit and pause
for 300 milliseconds. This will allow you to see the
lights fall down the screen at a slower pace.

Add a new line of code by pressing the + button.
Select while. Running this program at this stage
would burn the battery. To fix this, add a pause
instruction at the end of the loop. Click do nothing
in the code, then on the code keyboard click
micro:bit, more, then pause. Any pause duration
will work; in this case, we can even pick 0.

Get the ‘egg’ to drop down the LED display
We now want to get the egg to look like it is dropping down the display.

Create a forever loop to update the display regularly
Our next section of code requires you to get the display to update regularly. We do this by
using a forever loop. This is to make sure that the program is always running. If we didn’t
use a forever loop, then we would have to write lots of lines of code to simulate our outcome.

Preview your program, you should notice the 'egg' fall down the board.

PREVIEW

25

Challenge 3: Catch the egg game

20
We’re going to add the next line of code above
the pause. Select micro:bit from the keyboard. To
use the accelerometer you will need to select the
acceleration button. Now select store in var. The
program sets the acceleration to left and right. This
is the default position (x); you can also control up
and down (y). You should have something like this:

Change the position of the basket
using the accelerometer functionality
It’s now time to change the position of the basket. You can do this by using the accelerometer
within the BBC micro:bit. You may have used an accelerometer in your smartphone when
playing games previously. Have you ever had to play a maze game where you escort the
ball into the hole?

Preview your program, you should notice the 'egg' fall down the board.

21

22

We now need to work out the position of the
accelerometer and then turn the LED on.
Select the x variable from the data menu in the
keyboard. Select the assignment (:=) button.

Type in number 2, + and then select the math
library from the menu at the bottom. We need
the math library in TouchDevelop so that we can
do our rounding and work out the position of the
accelerometer.

23

24

Select the min button. Replace the first number
with 2 and then math and then max. This code
is finding the highest and lowest values that the
board could move to the left and right. You should
have something like the picture, right.

To finish, we need to replace the maximum values
with −2 and then the variable we created. In this
case it’s called millig. Divide it by 200.

PREVIEW

PREVIEW

26

Quick Start Guide for Teachers

26

27

Select IF from the menu and select the condition.
Select obstacle y from the variables and say if it’s
greater than 4 (4 is the bottom of the board).

Inside this IF condition, we’re going to tell the 'egg'
to find a new position at the top of the screen.
We’re going to set the value to −1 so that the 'egg'
is hidden just above the board before it appears
at zero. We’re then going to set the position of
obstacle x using the math library to find a random
value. Can you repeat the code shown? If you test
your program now, you will notice that the 'egg'
keeps falling down the screen in random positions.

Test your program on the device
Before you run the program on your device, use the simulator to test that it works on
screen. Use the mouse to simulate accelerometer input. You should now notice that
the lights change when you move the BBC micro:bit left and right. You should also
notice that the 'egg' falls from the top of the display.

Use IF conditions to check the final position of the 'egg'
We now want to make sure that the 'egg' moves back to the top of the screen when
it gets to the bottom of the board. We will need to use an IF condition to do this.

Do your own thing!

- Now that the ‘egg’ falls down the display, use an IF statement to detect if the egg and the basket
 are lined up (i.e. did you catch the egg in the basket).

- You will need to detect the position of the basket first (you could store this position in a variable).
 Once you've detected the position of the basket, you will need to detect the position of the egg (IF
 it’s reached the bottom of the screen). Store this information as a variable, too. You can use an IF
 statement to compare the two positions.

- Try to work out what you need to do to finish the game. If you get stuck, take a look at the online
 video tutorial, guided coding tutorial, or the solution on page 27.

25
You now need to add a line above the pause line
to plot the basket. To do this you need to select
micro:bit and plot. Select data to use the x
variable we have been using for our basket. PREVIEW

27

Challenges and solutions

Challenges and solutions

Challenge 1

Challenge 2

Challenge 3 PREVIEW

PREVIEW

28

Quick Start Guide for Teachers

Once you’ve tried out some of the BBC micro:bit
challenges with your students, you’ll probably
be looking for ways to challenge them further.
One way of doing this is to create guided coding
tutorials using the tutorial editor.

Once they’ve worked through a tutorial, why not
challenge them to adapt their programs to make them
work differently, or to add new code to make them
more complex?

Outcome

A tutorial that guides the user to create a script that
scrolls text across the screen if button A is pressed.

- By default, all of the lights are off.
- There will be a single state.
- The text will scroll to the left.

Decomposing the problem

This challenge can be decomposed into three parts:

1. Create code for the function you wish the BBC
 micro:bit to perform.
2. Publish the script and convert it into a tutorial.
3. Check that the tutorial works.

Create code for the function you wish the
BBC micro:bit to perform
You will need to create the code you wish your students to reproduce before
you can create your tutorial.

Creating your own tutorials
Using TouchDevelop to create an interactive tutorial for your students

Start by opening a new browser window and typing
live.microbit.co.uk in the address bar. Click on
Create Code. In TouchDevelop, click New project.
Type in a name for your script, such as Scrolling
text. Click on create. You will notice an empty
function named main. Click on the do nothing
statement to position the edit cursor inside the
function.

01

PREVIEW

29

Creating your own tutorials

We’re going to start by adding code that will check
for the input of the buttons.
Click on the while button in the on-screen
keyboard, which will create a while true loop.

Click on the do nothing statement inside the
while loop. Then click on the if button in the code
keyboard to create an if-then-else statement.
Select the condition (this is displayed in red).

Click micro:bit in the on-screen keyboard and
select button is pressed. This will automatically
default to button A. If you test your program at this
point, nothing will happen.

Click the do nothing statement under if-then.
Select micro:bit in the on-screen keyboard and
then find the show string button. Click after the
speech marks in the code, and then click edit in
the code keyboard. Type in the scrolling text you
wish to appear and click the tick button.

Your code should now scroll the text when you
push button A. Test your program to see if it works.

02

03

04

05

06

PREVIEW

PREVIEW

30

Quick Start Guide for Teachers

Publish the script and convert it to a tutorial
Now that you’ve created a script, you need to convert this into a tutorial.

Click my scripts to return to the script overview
page. Publish your script by clicking on the publish
button. Next press on the details tab then convert
to tutorial button. This button will generate a tutorial
that produces your script.

At this point, you will be editing a new script. Notice
the TODO sections of your code. The TODOS
allow you to describe each step in your program.
Navigate to the function main (see right).

The example in the picture, right, shows how you
might change the first line of text to act as an
introduction to the tutorial for your students.

To edit the text which will support, or explain,
individual steps of the tutorial, click on the script
button at the top of the screen.

07

08

09

10

PREVIEW

31

Creating your own tutorials

Select #0 main () from the list. Notice the TODOs
for you to describe. It is important to explain the
steps in this picture to your students.

You should aim to explain each of the TODO
steps in as much detail as you can. It will help the
students to understand the theory behind the step.

Click the my scripts button (left arrow) to return to
the script overview page. Press the follow tutorial
in editor button to check if your tutorial runs in the
correct order.

The following image shows an example of what
you might see on the screen.

Once you’re happy with your tutorial, click
my scripts and publish your tutorial.

11

12

13

14

15

Check the tutorial works

If you are interested in becoming more advanced in tutorial creation,
visit touchdevelop.com/docs/creatinginteractivetutorials.
This detailed guidance includes instructions for the addition of
avatars, which can explain the step-by-step process to your students.

PREVIEW

PREVIEW

The BBC micro:bit and the curriculum
Although the BBC micro:bit has been designed with young people’s own independent use in mind, for
schools in England following the new computing curriculum, BBC micro:bit has the potential to be a really
interesting platform for exploring lots of the required content.

design, use and evaluate computational abstractions that
model the state and behaviour of real-world problems and
physical systems

understand several key algorithms that reflect
computational thinking [for example, ones for sorting and
searching]; use logical reasoning to compare the utility of
alternative algorithms for the same problem

use two or more programming languages, at least one
of which is textual, to solve a variety of computational
problems; make appropriate use of data structures [for
example, lists, tables or arrays]; design and develop
modular programs that use procedures or functions

understand simple Boolean logic [for example, AND,
OR and NOT] and some of its uses in circuits and
programming; understand how numbers can be
represented in binary, and be able to carry out simple
operations on binary numbers [for example, binary addition,
and conversion between binary and decimal]

understand the hardware and software components that
make up computer systems, and how they communicate
with one another and with other systems

understand how instructions are stored and executed within
a computer system; understand how data of various types
(including text, sounds and pictures) can be represented
and manipulated digitally, in the form of binary digits

undertake creative projects that involve selecting, using,
and combining multiple applications, preferably across a
range of devices, to achieve challenging goals, including
collecting and analysing data and meeting the needs of
known users

create, re-use, revise and re-purpose digital artefacts for
a given audience, with attention to trustworthiness, design
and usability

understand a range of ways to use technology safely,
respectfully, responsibly and securely, including protecting
their online identity and privacy; recognise inappropriate
content, contact and conduct and know how to report
concerns

Students can learn much about the idea of abstraction by
thinking about the different layers of systems that have
to operate together to make the BBC micro:bit work, as
illustrated by the relationship of TouchDevelop or Blockly to
C++ and to the ARM mbed machine code that runs on the
chip itself.

There’s scope here to get students thinking algorithmically,
carefully planning their programs before they write any
code. Some key algorithms could be implemented on the
BBC micro:bit too, from finite state machines (Challenge
2: Digital pet) to ‘guess my number’ games using binary
search.

Students could compare programming the same algorithm
in both the Blocks and TouchDevelop code editors. They
can also learn to design and develop modular programs
using user-defined functions in TouchDevelop.

There’s chance to explore Boolean logic using the AND,
OR and NOT operators built in to the language and the A
and B input buttons on the BBC micro:bit.

The 25-pixel display lends itself to investigating binary
representation, both for images, creating simple bitmap
sprites, and for numbers, using it to display numbers up
to 225 using binary place value! Why not create a binary
counter or even a clock using the BBC micro:bit?

As it’s a simple system, the BBC micro:bit provides a
more accessible way for students to grasp complex ideas
of how hardware and software systems behave and
communicate.

The use of compiled machine code here might be part of
a unit of work exploring how instructions are stored and
executed in computers.

There’s ample scope for creative projects here, achieving
challenging goals and meeting the needs of known users.
The limitations of the BBC micro:bit interface make it a
great way to think creatively about design and usability.

Remixing code via the BBC micro:bit site provides some
great opportunities for working with ‘digital artefacts’
produced by others.

Participating in the BBC micro:bit online community
provides an opportunity to emphasise the need for respect
and responsibility when working online.

KS3 Computing PoS Subject content BBC micro:bit contexts

32

Quick Start Guide for Teachers

PREVIEW

PREVIEW

PREVIEW

